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I

ABSTRACT

An experimental investigation is undertaken to assess three-dimensional effects near a crack front in

a ductile three-point bend specimen. The possibility of using the optical method of caustics for the

measurement of the J integral in the presence of large scale yielding and three dimensional fields is also

investigated. Experiments using the optical methods of caustics by reflection and Twyman-Green inter-

ferometry are performed simultaneously on either side of the test specimen. The load and load-point

displacement are also measured. The experimental results are compared with very good agreement to

the results of a finite element simulation of the experiment. The caustics experiments are used to obtain

a calibration relation between the value of the J integral and the caustic diameter for load levels up to

fracture initiation. It is proposed that such a calibration be used in dynamic fracture initiation experi-

ments for the measurement of the time history of the dynamic J-integral. " -

1. INTRODUCTION

The J integral (Rice, 1968) is commonly used as a measure of a material's fracture toughness in

ductile fracture. It is postulated that a stationary, initially sharp, crack will grow when the loads are

increased to a level such that a critical value of J is achieved. This critical value is assumed to be a

material property. For two-dimensional, monotonically loaded, stationary cracks, the J integral is a

path independent line integral evaluated over an open contour surrounding the crack tip, and it is also a

measure of the intensity of the crack tip strain singularity (Hutchinson, 1968 and Rice and Rosengren,

1968). For three-dimensional plate specimens containing through cracks, one can define an integral

evaluated over a surface surrounding the entire crack front which is equivalent to the two-dimensional

J, and for monotonic loading, is independent of the choice of surface. This integral represents an aver-

age of the strength of the fields through the thickness. In addition, it can be shown that it represents the

average value of the local definition of J along the crack front as given by Shih, Moran and Nakamura,

(1986), as discussed on Part I of this investigation (Narasimhan and Rosakis, 1988b).

For either two- or three-dimensional problems, dynamic fracture initiation toughness may also be

characterized by the J integral. Unfortunately, few proven experimental techniques exist for measuring

J under dynamic loading conditions. Existing techniques developed by Costin, Duffy and Freund

(1977) and analyzed by Nakamura, Shih and Freund (1985) are based on the use of dynamic boundary

value measurements interpreted on the basis of quasistatic J estimation procedures. Because of this

limitation, the specimen geometries used in such experiments are highly restricted. As a result, it will
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be useful to develop optical methods capable of accurately estimating J directly, regardless of specimen

geometry and loading rates. In this paper, the first stages of developing such a technique are described.

The optical technique chosen is the method of caustics by reflection, which has already found many

useful applications in elastic dynamic fracture mechanics. This paper describes experiments designed to

develop an extension of the method of caustics to applications in elastic-plastic fracture mechanics. The

application of the present results to the analysis of dynamic experiments will be described in a future

paper (Zehnder, Rosakis and Krisnaswamy, 1989).

The method of caustics was originally developed by Manogg (1964) for measuring the stress inten-

sity factor in thin transparent, elastic plates. A series of important contributions on the subject is also

summarized by [heocaris (1981). The first extensions of the method of caustics to elastic-plastic frac-

ture were made by Rosakis and Freund (1982) and by Rosakis, Ma, and Freund (1983), based on the

assumption of validity of the plane stress, HRR, asymptotic crack tip field (Hutchinson, 1968 and Rice

and Rosengren, 1968) and it demonstrated that under certain conditions the value of the J integral can

be measured with caustics. Nonetheless, the recent work of Zehnder, Rosakis and Narasimhan (1986)

showed that the two-dimensional asymptotic approach severely limits the applicability of the method.

This is true because such an analysis cannot deal with either three-dimensional effects near the crack tip

or with large scale yielding effects, both characteristic of finite test specimens.

A new approach is taken here that allows for accurate measurement of thickness average of J for

any planar test specimen geometry and material (Zehnder, 1987). In brief, the approach is to make a

calibration of J versus the caustic diameter for a particular specimen geometry and material. It is

shown that this calibration may be performed experimentally or numerically with equal accuracy. The

results of simultaneous experiments, that use interferometry to measure the out of plane surface dis-

placements of the specimen, give further insight into the limitations of previous attempts to analyze

caustics through plane stress assumptions. The interferometric measurements are also used to confimi

the accuracy of the three-dimensional finite element analysis described in Part I of this investigation and

to discuss the region of dominance of the plane stress HRR field.

In the next section, the optical method of caustics is described and briefly reviewed. Subsequent

sections describe experiments using the optical methods of caustics and Twymann-Green interferometry,

performed simultaneously on either side of the test specimen. Load vs. load-point displacement and J

vs. load records are also obtained experimentally. These records, as well as the out of plane surface
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displacements, measured by interferometry, are compared with their numerical counterparts obtained on

the basis of the 3-D calculation described in Part I. Finally the caustics experiments are used to obtain

the relation between the caustic diameter, D, and the value of the J integral for different load levels.

This is found to be in excellent agreement with the equivalent relation between D and J obtained

numerically by means of the 3-D numerical calculation of Part I.

2. CAUSTICS BY REFLECTION

2.1 The mapping equations

Consider the flat surface of an opaque plate specimen of uniform thickness h, containing a through

crack. In the undeformed state, this surface, assumed to be perfectly reflective, will occupy a region in

the x 1 ,x 2 plane at x 3 = 0. When loads are applied on the lateral boundaries of the plate, the resulting

change in thickness of the plate specimen is nonuniform and the equation of the deformed specimen

surface will be expressed as:

x 3 +f(xI,x2) =0. (2.1)

Consider further, a family of light rays parallel to the x3-axis, incident on the reflecting surface. Upon

reflection, the light rays will deviate from parallelism (see Figure 1). If certain geometrical conditions

are met by the reflecting surface, then the virtual extensions of the reflected rays (dashed lines) will

form an envelope which is a three-dimensional surface in space. This surface, called the "caustic sur-

face", is the locus of points of highest density of rays (maximum luminosity) in the virtual image space.

The virtual extensions of the rays are tangent to the caustic surface. The reflected light field is recorded

on a camera positioned in front of the specimen. The focal plane of this camera, which will be called

the "screen", is located behind the plane x 3 = 0 (occupied by the reflector in the undeformed stite) and

intersects the caustic surface at the plane x 3 = -Zo, zo 2! 0. On the "screen', a cross section of the caus-

tic surface is observed as a bright curve (the caustic curve), bordering a dark region (the shadow spot).

The resulting optical pattern depends on the nature of the function f (x 1,x 2) and on the focal distance

Z0.

The reflection process can be viewed as a mapping of points (xI, x2) of the plane occupied by the

reflector in the undeformed state, onto points (X I,X 2) of the plane x 3 = -Zo (the "screen'). The map-

ping equations based on geometrical optics are given by (Rosakis and Zehndcr, 1985)
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X =x -2(zo-f) Vf (2.2)
_lVf 12

where X = Xaet, I=x x , and e , denote unit vectors. In the subsequent discussion Greek subscripts

have the range 1,2.

When zo ;x f, as is usually the case in most practical applications, the above simplifies to

X=x-2zoVf . (2.3)

Relations (2.3) are the mapping equations what will be used in the rest of this discussion.

2.2 The initial curve and its significance

Equation (2.2), or its approximation (2.3), is a mapping of the points on the reflecting surface onto

points on the "screen". If the "screen" intersects the caustic surface, then the resulting caustic curve on

the "screen" is a locus of points for which the determinant of the Jacobian matrix of the mapping equa-

tions (2.3) must vanish or

I (x I,x 2,z o) = det[X Op] = det[5,13 - 2zOf ot] = 0. (2.4)

The above is a necessary and sufficient condition for the existence of a caustic curve. The locus of

points on the reference plane (x1 , x2, x3 = 0) for which the Jacobian vanishes is called the initial curve

and its equation is given by (2.4). All points on the initial curve map onto the caustic curve. In addi-

tion, all points inside and outside this curve map outside the caustic. Since the light that forms the

caustic curve originates from the initial curve, essential information conveyed by the caustic comes

from that curve only.

Equation (2.4), defining the initial curve, depends parametrically on zo. Thus by varying zo, the ini-

tial curve position may be varied. If zo is large, then the initial curve will be located far from the crack

tip. If zo is small, then the initial curve will be close to the crack tip. Variation of zo can easily be

achieved experimentally by simply varying the focal plane of the recording camera system. This is an

essential property of the method of caustics and it can be utilized to "scan" the near tip region to obtain

information regarding the nature of deformation field at different distances from the crack tip. For the

case of a crack tip surrounded by a plastic zone, varying zo will move the "initial curve" inside or
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outside the plastic zone, providing information on the plastic strains as well as on the surrounding elas-

tic field.

2.3 The interpretation of caustics on the basis of plane stress analyses

The discussion of the previous section is intentionally kept as general as possible, and is not res-

tricted by the form of the function f (xI, x2) that describes the shape of the deformed specimewn sur-

face. In general, f (x1,x 2) can be identified as the out of plane displacement field u3(x1,x 2) evaluated

on the surface of the plate specimen.

For a cracked plate of uniform thickness and finite, in-plane dimensions, u 3 will depend on the con-

stitutive law of the material, on the applied load, and on the details of the specimen geometry (in-plane

dimensions and thickness). Given the lack of full-field, three-dimensional analytical solutions in frac-

ture mechanics, such information must be obtained by numerical computation. Nevertheless, there exist

certain special cases where available asymptotic solutions, based on two-dimensional analyses, may pro-

vide adequate approximations for the surface out of plane displacement field u3(x ,x 2). In particular, it

can be argued that conditions of plane stress will dominate in thin, cracked plates provided that both the

crack length and the in-plane dimensions are many times the plate thickness. In such cases, u 3(xl,x2)

can be approximated by means of available analytical solutions based on plane stress analyses.

2.3.1 Caustics obtained on the basis of plane stress aymptotic crack tip fields in linear elastostatics.

In linear elastic fracture mechanics, the principal application of the method of caustics is to the

direct measurement of the mode-I and mode-II stress intensity factors. By substitution of the u 3 dis-

placements for a Mode-I, plane stress crack (Williams, 1957) into equations (2.3) and (2.4), it was

shown by Manogg (1964) (see also Theocaris (1981) and Beinert and Kalthoff (1981)) that K, is related

to the maximum transverse diameter D of the caustic (width of caustic in the direction perpendicular to

the crack line) by

ED512
K, - 10.7zovh (2.5)

where E is the elastic modulus, v is the Poisson's ratio, h is the specimen thickness, and K, is the

mode-I stress intensity factor.
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The equation for the initial curve is obtained directly from (2.4) and can be shown to be a circle of

radius ro where

r°=0.316D = 3h vK,z, (2.6)

It should be observed here that for a given KI, ro - z 0 5 . A variation in zo, the distance behind the

specimen at which the camera is focussed, will result in changes in ro.

2.3.2 Caustics obtained on the basis of the asymptotic, plane stress HRR field.

For stationary cracks and within the framework of small displacement gradients and proportional

stress histories the value of the J -integral can be considered as a plastic strain intensity factor. The

viewpoint is adopted here that J is the scalar amplitude of the deformed shape of the surface of an

elastic-plastic fracture specimen at points within the region of dominance of the plane stress HRR field.

Substitution of the u3 displacement given by the plane stress HRR fields into equations (2.3) and

(2.4) provides a relation between D and J, found by Rosakis, Ma, and Freund (1983) to be

3n +2
E- Ohl nJ =D O ' , (2.7)

where Oo is the yield stress, n is the hardening exponent for the Ramberg-Osgood material model and

S, is a scalar function of n tabulated by Rosakis, Ma, and Freund (1983). Unlike the elastic case, the

initial curve is no longer circular, its shape depends on the hardening level of the material. It should be

noted at this point that equations (2.5)-(2.7) are obtained under the assumption of the validity of particu-

lar asymptotic plane stress fields.

• S lmlmmimlmml INI I ~ lBI I R B• In Hl
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2.4 Limitations of 2-D asymptotic analyses

The results of previous experiments and analyses by Zehnder, Rosakis, and Narasimhan (1986) show

that the interpretation of caustics on the basis of plane stress, small scale yielding assumptions limits the

applicability of the technique for practical applications in elastic-plastic fracture mechanics to small

scale yielding conditions in thin plates. Several factors combine to cause these limitations. Under

small scale yielding conditions, the region of dominance of the plane stress HRR fields is r <.3r

where rp is the plastic zone size ahead of the crack tip. Thus, to use equation (2.7) to measure J, the

initial curve must satisfy ro < .3rp. However, near the crack tip (r < .5h) there is a region where the

deformation field is three-dimensional. Thus, unless ro > .5h, it is clear that interpretation of caustics

obtained from near the crack tip and analyzed on the basis of the plane stress HRR field will be inaccu-

rate. In most test specimens, it is not possible to satisfy the conflicting requirements r0 < .3rp and

r0 > .5h.

In the next section, an approach is described which will allow for the measurement of the J integral

with caustics regardless of specimen dimensions and load level. In brief this approach is a calibration

of J versus the caustic diameter, D, for a particular three-dimensional specimen configuration. This

calibration is performed both experimentally and numerically by means of a three-dimensional elasto-

plastic calculation (see Part I). The two calibrations are compared to establish agreement between the

experiment and the numerical calculation. As one might think, a specimen dependent calibration of this

sort is not of particular use for static measurements of J where other techniques, based on boundary

value measurements, can be used. On the other hand, such a calibration, will allow, for the first time,

the interpretation of caustics obtained from a dynamic experiment by means of high-speed photography.

3. DESCRIPTION OF EXPERIMENTS

The investigation described in the following sections is both experimental and numerical. Caustic

curves were obtained from a particular specimen configuration at different load levels and were com-

pared to synthetic caustics obtained by finite elements and corresponding to the same load levels. The

elastic-plastic finite element analysis of Part I modelled the exact three-dimensional specimen

configuration and material constitutive properties. In order to provide an additional direct comparison

between the computation and the actual specimen deformation, a second experiment was performed

simultaneously with the caustics experiment. By using Twyman-Green interferometry, the out of plane

displacement on the specimen surface was measured for load levels up to fracture initiation. These
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displacements were compared direcctly to the numerical results. In addition the load and load point dis-

placement were compared to the numerical results. These experiments used three point bend specimens

(numbers 67 and 69) with a 4:1 length to width ratio. The specimen dimensions are given in Figure 2.

The material used was 4340 steel, heat treated at 8430 C for 1.5 hours, oil quenched, then annealed for

1 hour at 538' C. The material properties were yield stress Yo = 1030 MPa, and hardening exponent

n = 22.5 for a fit to the piecewise power hardening law. In uniaxial tension this is equivalent to

=r a/Io a -<
Lo{(G!Ca° a > ao ' (3.1)

where e is the yield strain. For these experiments both sides of the specimen were lapped optically flat

and polished to a mirror finish to allow for simultaneous caustics and interferometry measurements.

Four measurements were performed on each specimen: caustics, interferometry, load, and load

point displacement. The experiments proceeded by loading the specimen in small steps. During the

loading the load cell and the load-point displacement signals were recorded. When loading was stopped

at a particular step caustics photographs and interferometric photographs (interfcrograms) were

recorded. This process was repeated until the point of fracture initiation.

3.1 Load and Load-Point Displacement

The load and load point displacement were recorded with a 100,000 lb. capacity load cell and a

strain gage extensometer. The signals were recorded during loading by a digital oscilloscope. A photo-

graph of the specimen and loading fixtures is shown in Figure 3. The extensometer was attached to

fixtures connected to points "A" and "B" in the figure. There exists some extraneous displacement due

to compliance of the loading fixtures, and indentation of the specimen at the contacts with the rollers.

This extraneous displacement was subtracted using the procedure of Robinson and Tetelman (1967). In

this procedure, the support rollers are placed together, and an uncracked specimen is inserted between

the support rollers and the loading roller. The entire system is then compressed and the load-load point

displacement is measured. It was found that the extraneous displacement was approximately linear with
S

load and could be approximated by -1 = 4.0 x l0 mm/N, where 5 is the load point displacement and

P is the applied load.

-- m mmmm mmm mmmmmm-mA
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3.2 Caustics

inT,. ,austics were photographed by means of the experimental arrangement shown in Figure 4. The

collimated laser light reflected from the surface of the specimen is collected by the lens, which then

forms an image of the caustic on the screen. The translucent screen (made of graph paper taped over

plexiglass) is then photographed with the 35 mm camera. In these experiments zo was held constant. A

preliminary experiment was performed to choose a suitable zo. In the preliminary experiment, caustics

were obtained for various zo values and load levels. At low loads the caustics were clear for all z0 's.

But, as the load increased, as demonstrated in Figure 5, where a series of caustics for a fixed load

corresponding to J = 190 kN/m and varying z0 's is shown, the caustics for small z0 's become blurred

and ill-defined. This is caused partially by a loss of reflectivity due to plastic deformation. On this

basis it was decided to use zo = 100 cm. This choice allows caustics to be recorded without loss of

definition up to the fracture initiation load.

3.3 Inteferometry

A version of the Twyman-Green interferometer (see Hecht and Zajac, 1979) was used to measure

the out-of-plane surface displacement, u 3. A sketch of the optical arrangement is shown in Figure 4.

Due to the high sensitivity of interferometry, minimization of vibration of the specimen and optics is

important. Thus the entire apparatus including the loading frame was mounted on an isolated optical

table. The loading frame, optical table, camera, beam splitter and mirror are all seen in the photograph

of Figure 3.

A 50 mm diameter, collimated laser beam, split into two with a beamsplitter, was used for the inter-

ferometer. As sketched in Figure 4, the reference beam reflects from the flat mirror back through the

beamsplitter and into the camera. The object beam reflects from the specimen and then reflects from

the beamsplitter into the camera. When the two beams are adjusted to fall on top of each other, any

nonuniform differences in optical path length between the two beams results in light and dark fringes.

For complete interference between the reference and object beams the intensity of light from each beam

must be matched. Polished steel has a reflectivity of 50%, thus to match the reference beam to the

object beam and 50% reflectance mirror was used. The fringe patterns were photographed with a 35

mm camera using a 200 mm f/4 (50 mm diameter) telephoto lens. The camera was located such that 50

mm of the specimen filled 25 mm on the film. Kodak Technical Pan 2415 film shot at ASA 100 and

developed in Kodak D-19 was used in order to achieve high contrast and high resolution.
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Destructive interference between two waves occurs when the waves are out of phase by n X/2 where

X is the wavelength and n = 1,3,5 • • •. The phase shift between the reference and object beams is equal

to the difference in optical path length, thus the change in optical path length, 8S, represented by adja-

cent dark fringes is S = X. For small deformations S = 2u 3, thus adjacent dark fringes represent a

change in u3 of 5u3 = X12. For the He-Ne laser used here X = .6321am.

Due to the angular deflection of the reflected light rays, as seen in Figure 1, the relation S = 2u 3 is

not completely accurate; the actual optical path is slightly larger. In addition, the angular deflection

will change the location of the fringes. It was demonstrated by Zehnder (1987) that for these experi-

ments the maximum error in fringe location is less than IX and the error is less than .01, in the u3

values. It is important to focus the camera on the surface of the specimen so that a large caustic will

not be formed, obscuring the crack tip. By minimizing the caustic, fringes can be resolved to within

approximately 2 - 3 crack opening displacements.

The interferograms were analyzed by making 50X enlargements and digitizing the fringes by eye on

a computer digitizing pad.

4. NUMERICAL CALCULATIONS

The numerical calculations of Part I of this investigation, (Narasimhan and Rosakis, 1988b)

modelled in three dimensions, one quarter of the three point specimen shown in Figure 3, using five

layers of elements for half the thickness. An incremental J 2 plasticity theory was used. The material

obeyed the von Mises yield criterion and followed the piecewise power hardening law of equation (3.1),

with n = 22.5 and o = 1030 MPa, corresponding to the material used in the experiment. Loads were

applied to the specimen incrementally going from 0 to 80,000 N. The J integral calculated in Part I of

this investigation is shown here as a function of load in Figure 6. This J corresponds to an integral

evaluated over a cylindrical surface surrounding the crack front and can be shown to be equal to the

thickness average of the local definition of J along the crack front.
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5. RESULTS: COMPARISON BETWEEN EXPERIMENTS AND CALCULATIONS

5.1 Load, Load-Point Displacement and J Integral

The specimen geometry was chosen to take advantage of the load-displacement methods for estimat-

ing the J integral. For a ductile three-point bend specimen, Rice, Paris, and Merkle (1973) showed that

J may be estimated by

2 P~,(5.1)

J = 2f Pd0
zC 0

where P is the load applied to the specimen, h is the specimen thickness, and C is the uncracked liga-

ment length. The quantity 5c is the load point displacement due to the presence of the crack, i.e.,

Sc = 8 - 5,,, whre 8 is the total load point displacement and 5,,c is the load point displacement of an

uncracked, elastic beam of the same dimensions as the fracture specimen.

The load-displacement (P - 5) curves for specimens 67 and 69 are shown in Figure 7. For each

specimen, points are plotted only up to fracture initiation (74,700 N or .98Po where P 0 is the plane

stress limit load). Also shown is the P - 8 curve calculated from the three-dimensional numerical

model (see Part I of this investigation). Comparison of these results shows very good agreement

between tie experiments and the calculations.

The resulting J integral, plotted as a function of load, P, is given in Figure 6. Shown in the figure

are J calculated from equation (5.1) using the experimental results and J calculated from the numerical

analysis (see Part I). The agreement between the numerical and experimental results is quite good, indi-

cating that J may be calculated accurately either way. In the following discussions, the relation

between J and the applied load P shown in Figure 5 is used.

5.2 Interferometry and U3 Comparison

Since it is displacements that are most accurately calculated in the finite element method, these are

chosen for the most direct comparison with experiments. Interferograms were recorded for load levels

from 6000 N up to fracture initiation (74,700 N). At the highest load levels the quality of the interfero-

grams deteriorates. This is due to the roughening of the surface, resulting from plastic deformation near

the crack tip and also due to the high fringe density near the crack tip. The highest load for which
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fringes very near the crack tip could be resolved was 57,300 N.

Typical interferograms are presented in Figures 8 and 9. Figure 8 provides an overall picture of the

out-of-plane displacement field for a region of approximately 4 cm diameter. A more detailed view of

the near tip region is shown in Figure 9. Figure 9 shows that fringes can be resolved almost all the way

up to the crack tip (up to three crack opening displacements) except for the part obscured by a small

caustic.

Each interference fringe represents a line of constant out of plane displacement on the specimen sur-

face. Thus the interferogram is a contour map of the specimen surface. The numerical contour map on

the bottom of Figure 9 is a synthetic interferogram obtained from the out of plane displacements calcu-

lated from the three-dimensional numerical model in Part I. The displacement increment between the

lines is the same as in the optical interferogram (.317 Lin). As is evident from this comparison, good

qualitative agreement of the experimental and synthetic interferograms is achieved.

The interferograms represent the u3 displacement of the specimen with respect to some plane, the

plane of the reference mirror. The mirror is aligned as close to parallel to the specimen as possible.

Nonetheless, it will usually deviate slightly from parallelity. This deviation can be accounted for if the

displacements are known at 3 or more noncollinear points on the specimen. The u3 results from the

interferograms are matched to known displacements at these points. Due to the Mode-I symmetry of

the specimen and loading used in this experiment, the number of required points is reduced to two

points not on a line parallel to the x2 axis. The know displacements at the two points were provided by

the finite element calculation. The points used (xI = -1.5cm,x 2 -=0 and xI = 2.lcm,x 2 = 0) are points

of zero u3 displacement.

The u3 displacement along the line 0 = 0 is shown in Figure 10 for three load levels. Data are

shown only as close to the crack tip as fringes could be resolved. Generally fringes could be measured

to approximately 0.3 mm ahead of the crack tip and to approximately 0.5 mm behind the crack tip.

Away from the crack tip u 3 is linear with x as it should be for a beam. The displacement crosses zero

at x I = 2.1 cm and is positive for greater x values since this part of the specimen is in compression.

The displacement gradients are much larger behind the crack tip than ahead of the crack tip. The plas-

tic zone does not spread much behind the crack tip. Since most of the displacement occurs within the

plastic zone, this displacement must occur over a small distance, causing the steep displacement gra-

dients.
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To help visualize what the U3 field looks like near the crack tip, the experimentally obtained u 3 is

plotted three dimensionally in Figures lla and lIb for two different views. These compare well with

the equivalent surface plots shown in Figure of Part I.

A quantitative comparison between the experimental and numerical results is given in Figures 12-

14. In these figures, the experimentally obtained out of plane displacement, u 3, along the line x 2 = 0 is

plotted as a function of normalized distance x I from the crack tip for three load levels. Also shown are

the numerical results for the displacements corresponding to the same load levels. For reference, the

extent of the plastic zone ahead of the crack tip as well as the distance corresponding to one half the

specimen thickness are also shown on the figures. In Figure 12, where the plastic zone is very small, u 3

from the linear elastic plane-stress K1 field is shown for comparison. In Figure 14, where the plastic

zone is larger, U 3 from the plane stress HRR field is given.

The first observation is the excellent agreement between the experimental and numerical results at

all load levels. To show that the angular variation in displacement of the numerical results is also accu-

rate, the numerical and experimental U 3 along the line 0 = 400 is given in Figure 15 for a load of 52,300

N. Again the agreement of numerical and experimental results is excellent.

For all load levels (see in particular Figure 14), it was found that there is no region where the plane

stress HRR field adequately described U3 on the specimen surface. The asymptotic HRR field does not

agree with the actual field because of three dimensionality of the near crack tip fields and because of the

limited range of dominance of the asymptotic solution. At low loads Figure 12 shows that the plane

stress Kt field differs from the calculated U3 by approximately 25% for reasons similar to the ones dis-

cussed above. However, the method of caustics as based on the K field could probably be used for

these specimens at low loads since the experimentally obtained slope of U3 is close to that predicted by

the K1 field when r o = .5h. Recall that caustics depend on Vu 3, not on the absolute value of u 3.

Recent experiments by Chiang and Hareesh (1986) on very thin, ductile specimens showed that the

HRR field does predict U3 and U2 accurately for r/h > 1. In those experiments the ratio of specimen

width to thickness was 30:1. In the present experiments the ratio is 7:1. The results of Chiang and

Hareesh indicate that if one can make measurements in a region far enough away from the crack tip so

that three-dimensional effects are negligible, but close to the crack tip compared to in-plane specimen

dimensions, then th, asymptotic fields will accurately describe the true fields in some finite region. The

location of such a region will depend on specimen geometry and, if the material is non-linear, on the
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applied load level. One puzzling result of Chiang and Hareesh is that -u 3 has a maximum not at the

crack tip but at r/h = 0.5. This result is contradicted by both the present investigation and by results of

Wu and Chiang (1986) that show that -u3 has its maximum at the crack tip. Perhaps the difference has

to do with the differences in specimen geometries between the different experiments.

5.3 Caustics

In the previous section we were able to demonstrate that in terms of out of plane displacements, the

numerical results are in excellent agreement with experiment. This indicates that it should be possible

to generate caustics numerically which agree well with the experimentally observed caustics and are

useful for the measurement of the J integral. In this section this hypothesis is tested.

Caustics are first recorded experimentally for specimens 67 and 69 using a fixed value of zo = 100

cm. The sequence of caustic patterns for increasing loads up to fracture initiation, is shown in Figure

16. For the same value of zo, and the same loads, caustics are also generated numerically from the

results of the 3-D finite element analysis. This was achieved by smoothing the u3 displacements at the

specimen surface obtained by the numerical solution using a least squares numerical scheme as

described by Narasimhan and Rosakis (1988a). These displacements are shown in Figure 12 of Part I.

Caustic patterns were simulated by mapping rays point by point from this smoothed surface using Equa-

tion (2.3). The numerically simulated caustics are also shown in Figure 16. All of the caustic curves,

both experimental and numerical are reproduced here in the same scale. The values of J shown in the

figure are related to the applied load through the J-P record of Figure 6. Figure 16 shows that there is

good agreement, in shapes and sizes, between the experimental and numerical caustics.

Both experimental and numerical results were used to obtain a relation between caustic diameter D

and the J integral which is shown in Figure 17 in a nondimensional form. J was obtained from Figure

6 and D was measured directly from the experimentally and numerically generated caustics. Also

shown in the figure are the J vs. D relations obtained on the basis of the plane stress elastic analysis,

equation (2.5), and on the basis of the plane stress HRR field, equation (2.7). The solid line in Figure

16 is a fit through the experimental and numerical data points.

It is seen that the experimental and numerical results are in excellent agreement. This demonstrates

that such an approach can provide an accurate analysis of caustics in the form of a calibration for

measuring the J integral. The best fit curve shown in Figure 17 serves here as an empirical relationship
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between the caustic diameter and the J integral when the relationship based on two-dimensional asymp-

totic analyses are invalid. This relationship is valid only for the specimen geometry and material tested

here and only for zo = 100 cm.
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6. DISCUSSION

The above shows that all aspects of the numerical and experimental results are in good agreement.

The numerical and experimental P - 8 and J - P results of Figures 6 and 7 show that the numerical

calculation accurately models the overall specimen behavior. Also, it is demonstrated that J calculated

from the experimental P - 8 results, using equation (5.1), is consistent with the numerical calculation

of J. This demonstrates that equation (5.1) can be used accurately to calculate J without resorting to a

complicated 3-D numerical calculation. The agreement of the calculated and measured u3 displace-

ments (Figures 12-15) leaves no question that the numerical calculations are accurate and sufficiently

refined to model this specimen well, both in the overall behavior and in the details of the crack tip

fields. This provides a great deal of confidence in the numerical results and allows for the construction

of accurate synthetic caustics. In addition as evident from Figure 17, it is demonstrated that the calibra-

tion of J versus D may be performed either experimentally or numerically with equal accuracy. In

most cases, it will be more economical to perform this calibration experimentally.

The method of caustics as described in this paper is thus proposed as a technique for dynamic meas-

urements of the J integral. A procedure is proposed as follows: Given a material to test, select a

planar test specimen geometry that is adaptable to dynamic loading. Small scale yielding conditions

need not be maintained, and there is virtually no restriction on thickness of the specimen. Prepare the

specimens by lapping and polishing one surface. Perform a static calibration of J versus D for dif-

ferent load levels and a fixed zo. Use the same specimen geometry and material in a dynamic experi-

ment and record the caustics (with same fixed z0) up to crack initiation by means of a high speed cam-

era. Then use the calibration between J and D, described above, to analyze the caustics to determine

the time history of J under dynamic loading conditions. Preliminary results on the implementation of

the above procedure for the dynamical measurement of J are reported by Zehnder (1987) and by

Zehnder, Rosakis and Krisnaswamy (1989).

The advantage of this procedure comes from the use of a local, near tip measurement for estimating

J. This is expected to capture the details of time variation of J near the crack tip, even for high load-

ing rates and short times compared to stress wave transit times of the specimen. It should be noted that

such an approach is expected to be most accurate in strain rate insensitive solids. Its accuracy when

applied to highly rate sensitive materials needs further investigation.
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FIGURES

Figure 1.: Formation of caustic due to reflection of light from the polished, deformed specimen sur-
face near the crack tip.

Figure 2.: (a) Three point bend test specimen. All dimensions are in centimeters. (b) Finite ele-

ment mesh. (c) Details of finite element mesh near the crack tip.

Figure 3.: Photograph of loading frame and fixtures, specimen and interferometer optics.

Figure 4.: Optical setup for combined caustics and interferometry experiment.

Figure 5.: Sequence of caustics for a fixed load, but varying zo.

Figure 6.: J integral versus applied load.

Figure 7.: Load-point displacement versus applied load.

Figure 8.: Interferogram corresponding to a load of 35,000 N.

Figure 9.: Comparison of experimental and numerical interferograms. Experimental interferogram
is a magnification of Figure 8.

Figure 10.: Experimentally measured out-of-plane surface displacement for three different loads.

Figure 1 Ia.: Experimental u 3 displacement for 52,300 N.

Figure 1 lb.: Experimental U3 displacement for 52,300 N, (alternate view).

Figure 12.: Nondimensional U3 displacement on the line 0 = 0. Comparison of experimental and
numerical results for 21,200 N. Also shown is plane stress K, field.

Figure 13.: Nondimensional u 3 displacement on the line 0 = 0. Comparison of experimental and
numerical results for 35,000 N. Also shown is plane stress K, field.

Figure 14.: Nondimensional U3 displacement on the line 0 = 0. Comparison of experimental and
numerical results for 52,300 N. Also shown is plane stress K, field and u 3 from plane
stress HRR field.

Figure 15.: Nondimensional u 3 displacement on the line 0 = 400. Comparison of experimental and
numerical results for 52,300 N.

Figure 16.: Sequence of caustics for increasing loads, z0 = 100 cm. Experimental results from speci-
men 67. Numerical results for 3-D numerical analysis.
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Figure 17.: Relation between caustic diameter D and J integral. Experimental and 3-D numerical
results are shown. Also shown are relations from 2-D asymptotic analyses.
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Figure 2.: (a) Three point bend test specimen. All dimensions are in centimeters. (b Fin-
ite element mesh. (c) Details of finite element mesh near the crack tip.



Figure 3.: Photograph of loading frarnc and fixtures, specimen and interferometer optics.
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Figure 5.: Sequence of caustics for a fixed load, but varying zo.
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Figur 8.: Interferogram corresponding to a load of 35,000 N.



Figure 9.: Comparison of' expenimental and numerical interferograms. Experimental inter-
fcrogram is a magnification of Figure 8.
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EXPERIMENTAL NUMERICAL

J =19.8 kN/m j

J =54.7 kN/m .-

J 130kN/M

J 273 kN/m

Figure 16.: Sequence of caustics for increasing loads, z0

100 cm. Experimental results from specimen 67.
Numerical results for 3-D numerical analysis.
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